Rational torsion in optimal elliptic curves and the cuspidal subgroup

نویسنده

  • Amod Agashe
چکیده

LetN be a square free integer, and let A be an optimal elliptic curve over Q of conductor N . We prove that if A has a rational torsion point of prime order r such that r does not divide 6N , then r divides the order of the cuspidal subgroup of J0(N).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational torsion in elliptic curves and the cuspidal subgroup

Let A be an elliptic curve over Q of square free conductor N . Suppose A has a rational torsion point of prime order r such that r does not divide 6N . We prove that then r divides the order of the cuspidal subgroup C of J0(N). If A is optimal, then viewing A as an abelian subvariety of J0(N), our proof shows more precisely that r divides the order of A ∩ C. Also, under the hypotheses above, we...

متن کامل

STRUCTURE OF THE CUSPIDAL RATIONAL TORSION SUBGROUP OF J1(p n)

Let Γ be a congruence subgroup of SL(2,Z). The modular curve X(Γ) and its Jacobian variety J(Γ) are very important objects in number theory. For instance, the problem of determining all possible structures of (Q-)rational torsion subgroup of elliptic curves over Q is equivalent to that of determining whether the modular curves X1(N) have non-cuspidal rational points. Also, the celebrated theore...

متن کامل

Conjectures Concerning the Orders of the Torsion Subgroup, the Arithmetic Component Groups, and the Cuspidal Subgroup

We make several conjectures concerning the relations between the orders of the torsion subgroup, the arithmetic component groups, and the cuspidal subgroup of an optimal elliptic curve. These conjectures have implications for the second part of the Birch and Swinnerton-Dyer conjecture.

متن کامل

On the torsion of optimal elliptic curves over function fields

For an optimal elliptic curve E over Fq(t) of conductor p·∞, where p is prime, we show that E(F )tor is generated by the image of the cuspidal divisor group.

متن کامل

Counting Elliptic Curves with Prescribed Torsion

Mazur’s theorem states that there are exactly 15 possibilities for the torsion subgroup of an elliptic curve over the rational numbers. We determine how often each of these groups actually occurs. Precisely, if G is one of these 15 groups, we show that the number of elliptic curves up to height X whose torsion subgroup is isomorphic to G is on the order of X, for some number d = d(G) which we c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007